
Schur multipliers and combinatorics 
 

Abstract 

An infinite matrix A with complex entries is a Schur multiplier if, whenever X is 

the matrix of a bounded linear operator on Hilbert space, then so is the entrywise 

product A * X. While Schur multipliers have a beautiful functional-analytic 

characterisation due to Grothendieck, this can be difficult to apply in practice and 

it is often difficult to determine whether a matrix is a Schur multiplier or not. 

A Schur multiplier A is idempotent if it is a matrix of 0s and 1s. We can then 

identify A with the bipartite graph containing the edges (i,j) for which the (i,j)-

entry of A is 1. This combinatorial language is used in [2] to show that there are 

several "gaps" in the set of norms of idempotent Schur multipliers, extending 

results of Livshits [3] and Katavolos and Paulsen [1]. 

In this research project, we will continue to use both analytic and combinatorial 

tools to study Schur multipliers. Challenging motivating questions include: 

 Can we characterise the set of graphs of idempotent Schur multipliers? 

 Can we describe the set of norms of all idempotent Schur multipliers? 

We will also consider variants of these questions in which we replace the set of 

bounded operators on a Hilbert space with another von Neumann algebra in the 

spirit of [4], or with another operator space. 

A student hoping to work in this area should have a good grasp of basic functional 

analysis and an enthusiasm for combinatorics. 
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